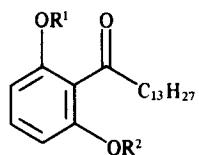


ARYLALKANONES FROM *MYRISTICA DACTYLOIDES*

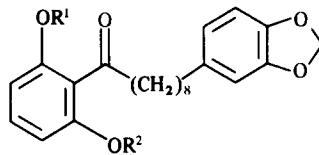
N. SAVITRI KUMAR, H. M. T. B. HERATH and VERANJA KARUNARATNE

Department of Chemistry, University of Peradeniya, Peradeniya, Sri Lanka

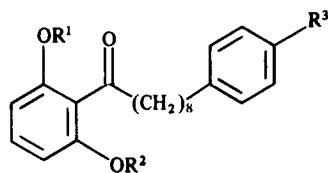
(Received 30 April 1987)

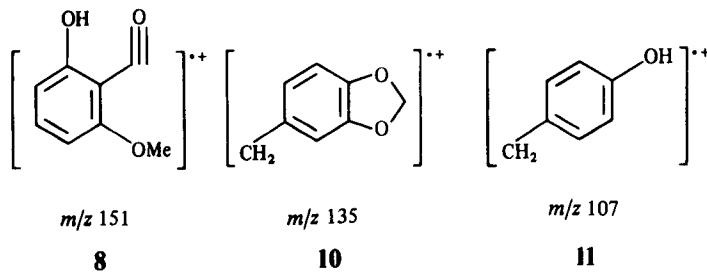

Key Word Index—*Myristica dactyloides*; Myristicaceae; malabaricones; arylalkanones.

Abstract—Four new arylalkanones isolated from the stem bark of *Myristica dactyloides* were identified as 1-(2-methoxy-6-hydroxyphenyl)tetradecan-1-one, 1-(2-methoxy-6-hydroxyphenyl)-9-(3',4'-methylenedioxyphenyl)nonan-1-one, 1-(2,6-dihydroxyphenyl)tetradecan-1-one and 1-(2-methoxy-6-hydroxyphenyl)-9-(4'-hydroxyphenyl)nonan-1-one.


INTRODUCTION

Three species of *Myristica*; *M. ceylanica*, *M. dactyloides* and *M. fragrans* are found in Sri Lanka. *M. fragrans* is the nutmeg of commerce while *M. ceylanica* is endemic to Sri Lanka [1]. *M. fragrans* [3] and *M. malabarica* [4] have been used for many years in the folk medicine of several countries. *M. dactyloides* is a large tree found in the montane forests of Sri Lanka [1, 5]; decoctions of the


bark and leaves are used in traditional medicine [5]. In this paper we report the isolation of seven arylalkanones 1-7 from this plant. The arylalkanones, 1-(2-methoxy-6-hydroxyphenyl)tetradecan-1-one 1, 1-(2-methoxy-6-hydroxyphenyl)-9-(3',4'-methylenedioxyphenyl)nonan-1-one 2, 1-(2,6-dihydroxyphenyl) tetradecan-1-one 3, and 1-(2-methoxy-6-hydroxyphenyl)-9-(4'-hydroxyphenyl) nonan-1-one 6 are new compounds while 4, 5 and 7 have previously been isolated as malabaricones A, D and B


1 R¹ = H, R² = Me
3 R¹ = R² = H
9 R¹ = R² = Me
11 R¹ = R² = Ac

2 R¹ = H, R² = Me
5 R¹ = R² = H
13 R¹ = R² = Me

4 R¹ = R² = R³ = H
6 R¹ = H, R² = Me, R³ = OH
7 R¹ = R² = H, R³ = OH
14 R¹ = H, R² = Me, R³ = OMe
15 R¹ = R² = Me, R³ = OMe

from the fruit rind of *M. malabarica* [4]. The only previous report on *M. dactyloides* describes the isolation of myoinositol from a methanol extract of the stem bark [6]. Structurally related compounds which have been isolated previously include arylpropanoids from *M. fragrans* [7–10], diarylheptanoids such as curcuminoids from *Curcuma longa* [11] and gingerols from *Zingiber officinalis* [12] (Zingiberaceae) and lignans from *Horsfieldia iryaghedi* [13, 14] (Myristicaceae).

RESULTS

Dried stem bark of *M. dactyloides* was collected at Hewaheta in the Central Province of Sri Lanka. The seven compounds 1–7 isolated by combined CC and prep. TLC from the hot dichloromethane extract of the stem bark were closely related and had a common 2,6-disubstituted acetophenone moiety with a polymethylene residue. In compounds 2, 4–7, a second benzene ring was linked to the 2,6-disubstituted acetophenone residue by the polymethylene chain.

The IR and ¹H NMR spectra of 1 ($C_{21}H_{34}O_3$) showed the presence of a conjugated carbonyl group (ν_{max} 1620 cm^{-1}), a single hydrogen bonded phenolic hydroxy group [δ_H 13.70 (1H, s) exchangeable with D_2O], a 1,2,3-trisubstituted benzene ring [δ_H 7.32 (1H, t, J = 8 Hz), 6.56 (1H, d, J = 8 Hz), 6.38 (1H, d, J = 8 Hz)], a methoxy group [δ_H 3.83 (3H, s)], an extended polymethylene side chain with one methylene group flanking the carbonyl group [δ_H 3.04 (2H, t, J = 7.5 Hz), δ_C 45.20 (t)] and a $C_{12}H_{25}$ alkyl residue [δ_H 1.60 (2H, m), 1.25 (23H, br s)]. A quartet at δ_C 14.3 indicated the unbranched nature of the polymethylene moiety. Hence it was deduced that compound 1 had the structure 1-(2-methoxy-6-hydroxyphenyl)tetradecan-1-one. Additional support for this structure was obtained from the mass spectrum which showed a base peak at m/z 151, attributed to the fragment ion 8 resulting from cleavage α -to the carbonyl group.

Treatment of compound 1 with diazomethane gave a dimethyl derivative 9 ($C_{22}H_{36}O_3$), [δ_H 3.83 (3H, s), 3.72 (3H, s)].

Compound 2 ($C_{23}H_{28}O_5$) showed the presence of a phenolic hydroxy group [ν_{max} 3500–3510 cm^{-1} , δ_H 13.10, exchangeable with D_2O], a conjugated carbonyl group (ν_{max} 1620 cm^{-1}), a methoxy group [δ_H 3.83 (3H, s)], a $-CO-CH_2$ residue [δ_H 3.03 (2H, t, J = 7.5 Hz) δ_C 45.01 (t)], and a benzylic methylene group [δ_H 2.51 (2H, t, J = 7.5 Hz), δ_C 35.67 (t)]. NMR data also indicated the presence of a methylenedioxy residue [δ_H 5.90 (2H, s), δ_C 100.66 (t)] and six aromatic protons [δ_H 7.32 (1H), 6.66 (3H), 6.56 (1H), 6.38 (1H)]. This suggested the presence of two trisubstituted benzene rings, one of which was a 2,6-disubstituted acetophenone moiety as in compound 1 (Table 1). Mass spectral evidence permitted the assignment of the methylenedioxy residue to the aromatic ring, which underwent benzylic cleavage to give a very intense peak at m/z 135 probably due to ion 10. The base peak at m/z 151 arose from α -cleavage of the carbonyl group as in compound 1. Hence, the data available suggested that the two benzene rings were linked by the polymethylene residue. Spectral data and biogenetic considerations suggested that compound 2 had the structure, 1-(2-methoxy-6-hydroxyphenyl)-9-(3',4'-methylenedioxyphenyl)nonan-1-one, which corresponds to the structure of the monomethyl ether of malabaricone D [4] previously isolated from *M. malabarica*.

¹H NMR and ¹³C NMR data (Table 1) for compound 3 ($C_{20}H_{32}O_3$) were essentially the same as those for compound 1, the only difference being the absence of a methoxy signal and the presence of two phenolic OH signals [δ_H 9.40 (2H, s, exchangeable with D_2O) in compound 3. Acetylation yielded a diacetate 11 [$(C_{24}H_{36}O_5)$ δ_H 2.20 (6H, s)]. Hence compound 3 was assigned the structure 1-(2,6-dihydroxyphenyl)-tetradecan-1-one. The base peak at m/z 137 in its mass spectrum, analogous to the peak at m/z 151 in compound

Table 1. ¹³C NMR chemical shifts (δ) of arylalkanones 1–7*

Carbon	1	2	3	4†	5	6	7
1	111.43 (s)	110.70 (s)	110.80 (s)	110.11 (s)	110.73 (s)	111.38 (s)	110.75 (s)
2	161.43 (s)	161.27 (s)	162.82 (s)	161.15 (s)	161.24 (s)	161.47 (s)	161.47 (s)
3	101.34 (d)	101.16 (d)	108.00 (d)	108.50 (d)	108.58 (d)	101.45 (d)	106.95 (d)
4	135.80 (d)	135.67 (d)	136.39 (d)	135.72 (d)	135.73 (d)	135.91 (d)	134.97 (d)
5	111.04 (d)	110.84 (d)	108.01 (d)	108.50 (d)	108.58 (d)	110.98 (d)	106.95 (d)
6	164.85 (s)	164.65 (s)	162.82 (s)	161.15 (s)	161.24 (s)	161.69 (s)	161.47 (s)
1'	—	147.42 (s)	—	142.90 (s)	147.55 (s)	135.15 (s)	132.86 (s)
2'	—	107.99 (d)	—	128.25 (d)	108.17 (d)	129.53 (d)	128.48 (d)
3'	—	136.75 (s)	—	128.43 (d)	136.96 (s)	115.25 (d)	114.38 (d)
4'	—	136.75 (s)	—	125.57 (d)	136.96 (s)	153.63 (s)	154.33 (s)
5'	—	108.83 (d)	—	128.43 (d)	109.00 (d)	115.25 (d)	114.38 (d)
6'	—	121.00 (d)	—	128.25 (d)	121.22 (d)	129.53 (d)	128.48 (d)
CH ₂ Me	14.25 (q)	—	14.30 (q)	—	—	—	—
OCH ₂ O	—	100.66 (t)	—	—	100.80 (t)	—	—
CO	208.61 (s)	207.90 (s)	209.50 (s)	208.12 (s)	207.98 (s)	208.27 (s)	207.34 (s)
COCH ₂	45.20 (t)	45.01 (t)	45.35 (t)	44.80 (t)	44.88 (t)	45.17 (t)	43.94 (t)
ArCH ₂	—	35.67 (t)	—	35.98 (t)	35.75 (t)	35.16 (t)	34.29 (t)
OMe	55.72 (q)	55.61 (q)	—	—	—	55.76 (q)	—

* Relative to TMS (int. standard).

† Reported in ref. [4].

1 provided further evidence for the structure of compound 3. Methylation of compound 3 with CH_2N_2 gave a mixture of 1 and the dimethyl ether 9.

IR, ^1H NMR and ^{13}C NMR spectra of compound 6 ($\text{C}_{22}\text{H}_{28}\text{O}_4$) suggested that it contained a conjugated carbonyl group (ν_{max} 1620 cm^{-1}), two phenolic OH groups, one of which was chelated (ν_{max} 3600 – 3100 cm^{-1}), δ_{H} 13.35 and 5.18 (each 1H, s, exchangeable with D_2O), a methoxy group [δ_{H} 3.87 (3H, s), δ_{C} 55.76 (q)], eight methylene groups with one flanking the carbonyl group [δ_{H} 3.04 (2H, t, $J = 7.5\text{ Hz}$), δ_{C} 45.17 (t)], and one benzylic methylene group [δ_{H} 2.52 (2H, t, $J = 7.5\text{ Hz}$), δ_{C} 35.16 (t)]. The presence of two benzene rings, one of which was a 2,6-di-O-substituted acetophenone residue was also indicated (Table 1). The second benzene ring was deduced to be 1-alkyl-4-hydroxy substituted [δ_{H} 7.02 and 6.74 (both 2H, d, $J = 8.0\text{ Hz}$), δ_{C} 153.63 (s), 135.15 (s), 129.53 (d), 115.25 (d)]. This suggested that the two benzene rings were linked by the polymethylene chain as in compound 4, and that the arylalkanone 6 had the structure, 1-(2-methoxy-6-hydroxyphenyl)-9-(4'-hydroxyphenyl)nonan-1-one. The presence of the fragment ions at m/z 151 (100%) due to α -cleavage of the carbonyl group and m/z 107 (29%) due to benzylic cleavage in the mass spectrum provided additional support for this structure.

Comparisons of the physical and spectroscopic data showed that compounds 4, 5 and 7 were identical to malabaricones A, D and B previously isolated from *M. malabarica* [4]. The structural relationships between the different arylalkanones were clearly indicated by the analyses of the products of methylation with diazomethane (Table 2).

EXPERIMENTAL

Mps: uncorr. Identities of compounds were established by mmp, co-TLC, IR and ^1H NMR comparison. Petrol refers to the fraction having bp 60–80°, Prep. TLC and medium pressure column chromatography (MPCC) were carried out on Merck Kieselgel 60 $\text{PF}_{254+366}$ and Merck Kieselgel ASTM 200, respectively. IR spectra were recorded in KBr discs. ^1H NMR spectra were recorded at 100 MHz in CDCl_3 with TMS as int st unless otherwise stated. MS were recorded at the Research School of Chemistry, The Australian National University. Methylation was carried out with CH_2N_2 – Et_2O at 27° for 12 hr followed by separation by prep. TLC.

Extraction and isolation. Dried and powdered stem bark of *M. dactyloides* (1.2 kg) was extd successively with hot petrol, hot CH_2Cl_2 and hot MeOH . The CH_2Cl_2 ext (48 g) was washed with 5% NaOH, acidified with 2M HCl and extd $\times 3$ with Et_2O . The

Table 2. Methylation products of arylalkanones 1–7 (CH_2N_2 –ether)

Arylalkanone	Product(s)
1	9
3	1+9
2	13
5	2+13
6	14+15
7	14+15

dried Et_2O ext (15.2 g) was chromatographed on silica gel using petrol– EtOAc mixts as eluents.

Elution with petrol– EtOAc (17:3) gave a yellow solid (380 mg), which on separation by MPCC and prep. TLC gave the less polar 1-(2-methoxy-6-hydroxyphenyl)tetradecan-1-one (1: 230 mg), needles from MeOH , mp 51–52°, $[\text{M}]^+$ 334.2510. $\text{C}_{21}\text{H}_{34}\text{O}_3$ requires $[\text{M}]^+$ 334.2508; IR ν_{max} 2910, 2850, 1620, 1590, 1450, 1375, 1235, 1180, 1090, 825, 780 and 710 cm^{-1} ; δ_{H} 13.70 (1H, s, D_2O exchangeable), 7.32 (1H, t, $J = 8\text{ Hz}$), 6.56 and 6.38 (each 1H, d, $J = 8\text{ Hz}$), 3.83 (3H, s) 3.04 (2H, t, $J = 7.5\text{ Hz}$), 1.60 (2H, m), 1.26 (23H, br s); MS m/z (rel. int.): 334 (9) $[\text{M}]^+$, 316 (7), 179 (28), 166 (21), 151 (100) and 137 (5), and the polar 1-(2-methoxy-6-hydroxyphenyl)-9-(3',4'-methylenedioxyphenyl)nonan-1-one (2: 70 mg), yellow crystls from CHCl_3 – MeOH , mp 51–52°, $[\text{M}]^+$ 384.1936. $\text{C}_{23}\text{H}_{28}\text{O}_5$ requires $[\text{M}]^+$ 384.1937; IR ν_{max} 3500–3100, 2900, 2800, 1620, 1580, 1500, 1450, 1380, 1240, 1180, 1090, 1030, 935, 790 and 715 cm^{-1} ; δ_{H} (300 MHz) 13.10 (1H, s, D_2O exchangeable), 7.32 (1H, t, $J = 8\text{ Hz}$), 6.71 (1H, d, $J = 8\text{ Hz}$), 6.67 (1H, s), 6.61, 6.56 and 6.38 (each 1H, d, $J = 8\text{ Hz}$), 5.90 (2H, s), 3.88 (3H, s), 3.03 and 2.51 (each 2H, t, $J = 7.5\text{ Hz}$), 1.81 (4H, m), 1.33 (8H, br s); MS m/z (rel. int.): 384 (88) $[\text{M}]^+$, 218 (14), 192 (12), 179 (44), 151 (100), 137 (11), 136 (30) and 135 (83).

Elution with petrol– EtOAc (7:3) gave a yellow solid (1.6 g) which was separated by MPCC and prep. TLC into the least polar 1-(2,6-dihydroxyphenyl)-tetradecan-1-one (3: 540 mg), pale yellow needles from CH_2Cl_2 –petrol, mp 91–92°, $[\text{M}]^+$ 320.2334. $\text{C}_{20}\text{H}_{32}\text{O}_3$ requires $[\text{M}]^+$ 320.2351; IR ν_{max} 3500–3000, 2930, 2850, 1630, 1600, 1450, 1245, 1035, 960, 790 and 715 cm^{-1} ; δ_{H} 9.40 (2H, s, D_2O exchangeable), 7.18 (1H, t, $J = 8\text{ Hz}$), 6.32 (2H, d, $J = 8\text{ Hz}$), 3.12 (2H, t, $J = 7.5\text{ Hz}$), 1.60 (2H, m), 1.25 (23H, br s); MS m/z (rel. int.): 320 (11) $[\text{M}]^+$, 302 (13), 189 (11), 165 (28), 152 (29), and 137 (100), 1-(2,6-dihydroxyphenyl)-9-phenylnonan-1-one (malabaricone A) (4: 480 mg) bright yellow crystals from Et_2O –hexane, mp 80–81° (lit. [4] 81–82°), and the most polar 1-(2,6-dihydroxyphenyl)-9-(3',4'-methylenedioxyphenyl)nonan-1-one (malabarcone D) (5: 86 mg), pale yellow crystals from CH_2Cl_2 –hexane, mp 86–87° (lit. [4] 90–91°).

Elution with petrol– EtOAc (11:9) gave on purification by prep. TLC and recrystallization from Me_2CO –hexane, pale yellow crystals of 1-(2-methoxy-6-hydroxyphenyl)-9-(4'-hydroxyphenyl)nonan-1-one (6: 1.6 g), mp 65–66°, $[\text{M}]^+$ 356.1987. $\text{C}_{22}\text{H}_{28}\text{O}_4$ requires $[\text{M}]^+$ 356.1988; IR ν_{max} 3600–3100, 2895, 2850, 1620, 1590, 1510, 1460, 1240, 1090, 830, 780 and 720 cm^{-1} ; δ_{H} 13.35 (1H, s, D_2O exchangeable), 7.32 (1H, t, $J = 8\text{ Hz}$), 7.02 and 6.74 (each 2H, d, $J = 8\text{ Hz}$), 6.58 and 6.38 (each 1H, d, $J = 8\text{ Hz}$), 5.18 (1H, s, D_2O exchangeable), 3.87 (3H, s), 3.04 and 2.52 (each 2H, t, $J = 7.5\text{ Hz}$), 1.60 (4H, m), 1.32 (8H, br s); MS m/z (rel. int.): 356 (6) $[\text{M}]^+$, 179 (24), 166 (12), 151 (100), 137 (6) and 107 (29).

Elution with petrol– EtOAc (1:1) gave, on purification by prep. TLC and crystallization from Me_2CO –hexane, 1-(2,6-dihydroxyphenyl)-9-(4'-hydroxyphenyl)nonan-1-one (malabaricone B) (7: 240 mg), mp 105–106° (lit. [4] 102°).

Methylation of (1). Compound 1 (30 mg) on methylation gave 1-(2,6-dimethoxyphenyl)tetradecan-1-one (9: 11 mg $[\text{M}]^+$ 348.2665. $\text{C}_{22}\text{H}_{30}\text{O}_3$ requires $[\text{M}]^+$ 348.2664; IR ν_{max} 2900, 1710, 1600, 1470, 1110, and 770 cm^{-1} ; δ_{H} (60 MHz) 7.08 (1H, t, $J = 8\text{ Hz}$), 6.51 and 6.18 (each 1H, d, $J = 8\text{ Hz}$), 3.83 (3H, s), 3.72 (3H, s), 2.54 (2H, t, $J = 7.5\text{ Hz}$), 1.65 (2H, m), 1.25 (23H, br s); MS m/z (rel. int.): 348 (19) $[\text{M}]^+$, 211 (14), 153 (21), 151 (67), 138 (79), 137 (100) and 107 (25).

Methylation of (2). Compound 2 (25 mg) on methylation gave 1-(2,6-dimethoxyphenyl)-9-(3',4'-methylenedioxyphenyl)nonan-1-one (13: 8.2 mg); IR ν_{max} (film) 2925, 1725, 1595, 1475, 1350, 1220, 1190, 1015, 920, 800, 760 and 710 cm^{-1} ; δ_{H} 7.00 (1H, t, $J = 8\text{ Hz}$), 6.57 (3H, m), 6.33 (2H, d, $J = 8\text{ Hz}$), 5.85 (2H, s), 3.81 (3H,

s), 3.67 (3H, *s*), 2.46 (4H, *m*), 1.48 (4H, *m*), 1.25 (8H, *br s*); MS *m/z* (rel. int.): 398 (69) [M]⁺, 218 (16), 193 (28), 179 (11), 165 (100), 151 (96), 135 (91), 121 (38), and 107 (21).

Methylation of (3). Compound 3 (50 mg) on methylation gave two products identical with compounds (1) (21 mg) and (9) (16 mg).

Acetylation of (3). Compound 3 (30 mg) on reaction with pyridine (0.5 ml) and Ac₂O (1 ml) at 70° for 12 hr gave 1-(2,6-diacetoxypyhenyl)tetradecan-1-one (11: 28 mg), [M]⁺ 404.2564 C₂₄H₃₆O₅ requires [M]⁺ 404.2563; IR ν_{max} 2950, 1770, 1700, 1605, 1460, 1365, 1180, and 1030 cm⁻¹; δ_{H} 7.18 (3H, *m*) 2.64 (2H, *t*, *J* = 7.5 Hz), 2.20 (6H, *s*), 1.65 (2H, *m*), 1.25 (23H, *br s*); MS *m/z* (rel. int.): 403 (3) [M]⁺, 302 (14), 189 (17), 165 (67), 152 (59), and 137 (100).

Methylation of (5). Compound 5 (50 mg) on methylation gave two products identical with compounds (2) (21 mg) and (13) (12 mg).

Methylation of (6). Compound 6 (50 mg) on methylation gave 1-(2-methoxy-6-hydroxypyhenyl)-9-(4'-methoxypyhenyl)nonan-1-one (14: 23 mg), [M]⁺ 370.2142. C₂₃H₃₀O₄ requires [M]⁺ 370.2144; IR ν_{max} (film) 2925, 1730, 1625, 1600, 1510, 1460, 1375, 1235, 1185, 1090, 1045 and 715 cm⁻¹; δ_{H} 13.20 (1H, *s*), 7.31 (1H, *t*, *J* = 8 Hz), 7.08 and 6.80 (each 2H, *d*, *J* = 8 Hz), 6.57 and 6.38 (each 1H, *d*, *J* = 8 Hz), 3.88 and 3.78 (each 3H, *s*), 3.03 and 2.55 (each 2H, *t*, *J* = 7.5 Hz), 1.65 (4H, *m*), 1.32 (8H, *br s*); MS *m/z* (rel. int.): 370 (23) [M]⁺, 179 (27), 151 (100), 149 (55), 147 (10), and 121 (87), and 1-(2,6-dimethoxypyhenyl)-9-(4'-methoxypyhenyl)nonan-1-one (15: 16 mg), [M]⁺ 384.2297. C₂₄H₃₂O₄ requires [M]⁺ 384.2301; IR ν_{max} (film) 2900, 1700, 1595, 1510, 1460, 1375, 1245, 1110 and 720 cm⁻¹; δ_{H} 7.08 (3H, *m*), 6.80 and 6.57 (each 2H, *d*, *J* = 8 Hz), 3.78 (9H, *s*), 2.56 and 1.64 (each 4H, *m*), 1.32 (8H, *br s*); MS *m/z* (rel. int.): 384 (9) [M]⁺, 274 (10), 166 (15), 165 (93), 152 (50), 151 (100), 137 (15), 121 (87), and 107 (11).

Methylation of compound (7). Compound 7 (40 mg) on methylation gave two products identical with the Me ethers (14) (23 mg) and (15) (12 mg).

Acknowledgements—The authors thank Dr J. K. MacLeod, The Australian National University, Canberra for high resolution MS data, Ms Lena Liedgren, University of Stockholm for 100 MHz NMR data, Sigma Xi, The Scientific Research Society for financial assistance and Ms S. C. Weerasekera for technical assistance. This work was supported by the Natural Resources, Energy and Science Authority of Sri Lanka.

REFERENCES

1. Trimen, H. (1974) *A Handbook of the Flora of Ceylon* Part III, p. 431. Dehra Dun, India.
2. Kalbhen, D. A. (1971) *Angew. Chem. Int. Ed.*, **10**, 370.
3. Forrest, J. E. and Heacock, R. A. (1977) *Lloydia*, **35**, 440.
4. Purushothaman, K., Sarada, A. and Connolly, J. D. (1977) *J. Chem. Soc. Perkin Trans.* 587.
5. Jayaweera, D. M. A. (1982) *Medicinal Plants used in Sri Lanka*, Part IV, p. 107. National Science Council, Colombo.
6. Tillekeratne, L. M. V., Jayamanne, D. T. and Weerasooriya, K. D. V. (1981) *J. Natl Sci. Council, Sri Lanka* **9**, 251.
7. Isogai, A., Akinoro, S. and Saburo, T. (1973) *Agric. Biol. Chem.* **37**, 193.
8. Isogai, A., Murakoshi, S., Akinoro, S. and Saburo, T. (1973) *Agric. Biol. Chem.* **37**, 1479.
9. Forrest, T. P., Forrest, J. E. and Heacock, R. A. (1973) *Naturwissenschaften* **60**, 257.
10. Forrest, J. E., Heacock, R. A. and Thomas, P. (1974) *J. Chem. Soc. Perkin Trans I* 205.
11. Srinivasan, K. R. (1953) *J. Pharm. Pharmacol.* **5**, 448.
12. Connell, D. W. and Sutherland, M. D. (1969) *Aust. J. Chem.* **22**, 1033.
13. Gunatilaka, A. A. L., De Silva, A. M. Y. J., Sotheeswaran, S. and Tillekeratne, L. M. V. (1982) *Phytochemistry* **21**, 2719.
14. Tillekeratne, L. M. V., Jayamanne, D. T., Weerasooriya, K. D. V. and Gunatilaka, A. A. L. (1982) *Phytochemistry* **21**, 476.